Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
1.
J Colloid Interface Sci ; 668: 399-411, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38685165

RESUMEN

Researchers are interested in single-atom catalysts with atomically scattered metals relishing the enhanced electrocatalytic activity for nitrogen reduction and 100 % metal atom utilization. In this paper, we investigated 18 transition metals (TM) spanning 3d to 5d series as efficient nitrogen reduction reaction (NRR) catalysts on defective 2D SiPV layered structures through first-principles calculation. A systematic screening identified Mo@SiPV, Nb@SiPV, Ta@SiPV and W@SiPV as superior, demonstrating enhanced ammonia synthesis with significantly lower limiting potentials (-0.25, -0.45, -0.49 and -0.15 V, respectively), compared to the benchmark -0.87 eV for the defective SiP. In addition, the descriptor ΔG*N was introduced to establish the relationship between the different NRR intermediates, and the volcano plot of the limiting potentials were determined for their potential-determining steps (PDS). Remarkably, the limiting voltage of the NRR possesses a good linear relationship with the active center TM atom Ɛd, which is a reliable descriptor for predicting the limiting voltage. Furthermore, we verified the stability (using Ab Initio Molecular Dynamics - AIMD) and high selectivity (UL(NRR)-UL(HER) > -0.5 V) of these four catalysts in vacuum and solvent environments. This study systematically demonstrates the strong catalytic potential of 2D TM@SiPV(TM = Mo, Nb, Ta, W) single-atom catalysts for nitrogen reduction electrocatalysis.

2.
Materials (Basel) ; 17(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612089

RESUMEN

Flexible La-doped Sm2Zr2O7/polyurethane (PU) coated leather composites were synthesized using a one-step hydrothermal method, with highly efficient photocatalytic degradation properties by coating the La-doped Sm2Zr2O7/PU emulsion onto the leather and drying it. The phase composition and optical properties of the as-prepared photocatalytic material were systematically characterized. The result revealed that La was doped in Sm2Zr2O7 successfully, and the prepared samples still possessed pyrochlore structure. The absorption edge of the prepared samples exhibited a red-shift with the increase in La doping, indicating that La doping could broaden the absorbance range of the La-doped Sm2Zr2O7 materials. The catalytic performance of La-doped Sm2Zr2O7/PU composite emulsion coating on the photocatalytic performance of leather was studied with Congo red solution as the target pollutant. The results showed that the best photocatalytic property was found in the 5% La-doped Sm2Zr2O7 nanomaterial at a concentration of 3 g/L. The resulting 5% La-doped Sm2Zr2O7 nanomaterial exhibited a high specific surface area of 73.5 m2/g. After 40 min of irradiation by a 450 W xenon lamp, the degradation rate of Congo red reached 93%. Moreover, after surface coating, the La-doped Sm2Zr2O7/PU coated leather composites showed obviously improved mechanical properties, as the tensile strength of La-doped Sm2Zr2O7/PU coated leather composites increased from 6.3 to 8.4 MPa. The as-prepared La-doped Sm2Zr2O7/PU coated leather composites with enhanced mechanical properties and highly efficient photocatalytic performance hold promising applications in the treatment of indoor volatile organic compounds.

3.
J Agric Food Chem ; 72(13): 7308-7317, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38529564

RESUMEN

Kauralexin A1 (KA1) is a key intermediate of the kauralexin A series metabolites of maize phytoalexins. However, their application is severely limited by their low abundance in maize. In this study, an efficient biosynthetic pathway was constructed to produce KA1 in Saccharomyces cerevisiae. Also, metabolic and enzyme engineering strategies were applied to construct the high-titer strains, such as chassis modification, screening synthases, the colocalization of enzymes, and multiple genomic integrations. First, the KA1 precursor ent-kaurene was synthesized using the efficient diterpene synthase GfCPS/KS from Fusarium fujikuroi, and optimized to reach 244.36 mg/L in shake flasks, which displayed a 200-fold increase compared to the initial strain. Then, the KA1 was produced under the catalysis of ZmCYP71Z18 from Zea mays and SmCPR1 from Salvia miltiorrhiza, and the titer was further improved by integrating the fusion protein into the genome. Finally, an ent-kaurene titer of 763.23 mg/L and a KA1 titer of 42.22 mg/L were achieved through a single-stage fed-batch fermentation in a 5 L bioreactor. This is the first report of the heterologous biosynthesis of maize diterpene phytoalexins in S. cerevisiae, which lays a foundation for further pathway reconstruction and biosynthesis of the kauralexin A series maize phytoalexins.


Asunto(s)
Diterpenos de Tipo Kaurano , Diterpenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fitoalexinas , Diterpenos de Tipo Kaurano/metabolismo , Diterpenos/metabolismo , Fermentación , Ingeniería Metabólica
4.
Aquat Toxicol ; 270: 106894, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492287

RESUMEN

This review explains the sources of nanoplastics (NPs) and microplastics (MPs), their release, fate, and associated health risks in the aquatic environment. In the 21st century, scientists are grappling with a major challenge posed by MPs and NPs. The global production of plastic has skyrocketed from 1.5 million tons in the 1950s to an astonishing 390.7 million tons in 2021. This pervasive presence of these materials in our environment has spurred scientific inquiry into their potentially harmful effects on living organisms. Studies have revealed that while MPs, with their larger surface area, are capable of absorbing contaminants and pathogens from the surroundings, NPs can easily be transferred through the food chain. As a result, living organisms may ingest them and accumulate them within their bodies. Due to their minuscule size, NPs are particularly difficult to isolate and quantify. Furthermore, exposure to both NPs and MPs has been linked to various adverse health effects in aquatic species, including neurological impairments, disruption of lipid and energy metabolism, and increased susceptibility to cytotoxicity, oxidative stress, inflammation, and reactive oxygen species (ROS) production. It is alarming to note that MPs have even been detected in commercial fish, highlighting the severity of this issue. There are also challenges associated with elucidating the toxicological effects of NPs and MPs, which are discussed in detail in this review. In conclusion, plastic pollution is a pressing issue that governments should tackle by ensuring proper implementation of rules and regulations at national and provincial levels to reduce its health risks.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Plásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminación Ambiental , Metabolismo Energético
5.
Parkinsonism Relat Disord ; 123: 106075, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38492517

RESUMEN

INTRODUCTION: Sialorrhea is a common neurological manifestation of Parkinson's disease (PD). No specifically designed prospective study has tested the effects of deep brain stimulation of the subthalamic nucleus (STN-DBS) on sialorrhea in patients with advanced PD. We focused on the effect of STN-DBS on the incidence of sialorrhea in patients with PD. METHODS: This multicenter, prospective, non-randomized concurrent clinical trial analyzed the incidence of sialorrhea during long-term follow-up in 170 patients with advanced PD (84 patients with STN-DBS and 86 patients with medication therapy). RESULTS: After STN-DBS, 58.1% of patients presented with sialorrhea (Drooling Rating Scale (DRS) > 5) compared with 39.3% of patients with medication therapy (P < 0.001). STN-DBS stimulation demonstrated a significant increase in DRS and Drooling Severity and Frequency Scale (DSFS) compared with the patients with medication therapy (P < 0.001). At follow-up, the onabotulinumtoxin-A (BTX-A) injection ratio was significantly higher in the STN-DBS group (29.8% vs. 11.9%, P = 0.0057) compared with the patients with medication therapy. CONCLUSIONS: STN-DBS increased the risk of sialorrhea in patients with advanced PD. TRIAL REGISTRATION: clinicaltrials. gov (NCT06090929).

6.
J Agric Food Chem ; 72(14): 7684-7693, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38532701

RESUMEN

Fosmidomycin (FOS) is a natural product inhibiting the DXR enzyme in the MEP pathway and has stimulated interest for finding more suitable FOS analogues. Herein, two series of FOS analogue hydroxamate-containing bisphosphonates as proherbicides were designed, with bisphosphonate replacing the phosphonic unit in FOS while retaining the hydroxamate (BPF series) or replacing it with retro-hydroxamate (BPRF series). The BPF series were synthesized through a three-step reaction sequence including Michael addition of vinylidenebisphosphonate, N-acylation, and deprotection, and the BPRF series were synthesized with a retro-Claisen condensation incorporated into the reaction sequence. Evaluation on model plants demonstrated several compounds having considerable herbicidal activities, and in particular, compound 8m exhibited multifold activity enhancement as compared to the control FOS. The proherbicide properties were comparatively validated. Furthermore, DXR enzyme assay, dimethylallyl pyrophosphate rescue, and molecular docking verified 8m to be a promising proherbicide candidate targeting the DXR enzyme. In addition, 8m also displayed good antimalarial activities.


Asunto(s)
Isomerasas Aldosa-Cetosa , Antimaláricos , Fosfomicina , Fosfomicina/análogos & derivados , Difosfonatos , Simulación del Acoplamiento Molecular , Fosfomicina/farmacología , Isomerasas Aldosa-Cetosa/metabolismo
7.
Magn Reson Imaging ; 109: 264-270, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522624

RESUMEN

Proton exchange underpins essential mechanisms in diverse MR imaging contrasts. Omega plots have proven effective in mapping proton exchange rates (kex) in live human brains, enabling the differentiation of MS lesion activities and characterization of ischemic stroke. However, Omega plots require extended saturation durations (typically 5 to 10 s), resulting in high specific absorption rates (SAR) that can hinder clinical feasibility. In this study, we introduce a novel kex mapping approach, named induced Saturation Transfer Recovery Steady-States (iSTRESS). iSTRESS integrates an excitation flip angle pulse prior to chemical exchange saturation transfer (CEST) saturation, effectively aligning the magnetization with its steady-state value. This innovation reduces saturation times and mitigates SAR concerns. The formula for iSTRESS-based kex quantification was derived theoretically, involving two measurements with distinct excitation flip angles and saturation B1 values. Bloch-McConnell simulations confirmed that iSTRESS-based kex values closely matched input values (R2 > 0.99). An iSTRESS MRI sequence was implemented on a 9.4 T preclinical MRI, imaging protein phantoms with pH values ranging from 6.2 to 7.4 (n = 4). Z-spectra were acquired using excitation flip angles of 30° and 60°, followed by CEST saturation at powers of 30 and 120 Hz respectively, with a total saturation time of <1 s, resulting in two iSTRESS states for kex mapping. kex maps derived from the phantom study exhibited a linear correlation (R2 > 0.99) with Omega plot results. The developed iSTRESS method allows for kex quantification with significantly reduced saturation times, effectively minimizing SAR concerns.


Asunto(s)
Imagen por Resonancia Magnética , Protones , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Concentración de Iones de Hidrógeno , Medios de Contraste , Fantasmas de Imagen
8.
Cell Cycle ; 23(1): 56-69, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38389126

RESUMEN

AXL plays crucial roles in the tumorigenesis, progression, and drug resistance of neoplasms; however, the mechanisms associated with AXL overexpression in tumors remain largely unknown. In this study, to investigate these molecular mechanisms, wildtype and mutant proteins of arrestin domain-containing protein 3 (ARRDC3) and AXL were expressed, and co-immunoprecipitation analyses were performed. ARRDC3-deficient cells generated using the CRISPR-Cas9 system were treated with different concentrations of the tyrosine kinase inhibitor sunitinib and subjected to cell biological, molecular, and pharmacological experiments. Furthermore, immunohistochemistry was used to analyze the correlation between ARRDC3 and AXL protein expressions in renal cancer tissue specimens. The experimental results demonstrated that ARRDC3 interacts with AXL to promote AXL ubiquitination and degradation, followed by the negative regulation of downstream signaling mechanisms, including the phosphorylation of protein kinase B and extracellular signal-regulated kinase. Notably, ARRDC3 deficiency decreased the sunitinib sensitivity of clear cell renal cell carcinoma (ccRCC) cells in a manner dependent on the regulation of AXL stability. Overall, our results suggest that ARRDC3 is a negative regulator of AXL and can serve as a novel predictor of sunitinib therapeutic response in patients with ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Arrestinas/metabolismo , Arrestinas/uso terapéutico , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Sunitinib/farmacología , Sunitinib/uso terapéutico
9.
Transl Stroke Res ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38302738

RESUMEN

Hypertension and aging are leading risk factors for stroke and vascular contributions to cognitive impairment and dementia (VCID). Most animal models fail to capture the complex interplay between these pathophysiological processes. In the current study, we examined the development of cognitive impairment in 18-month-old spontaneously hypertensive rats (SHR) before and following ischemic stroke. Sixty SHRs were housed for 18 months with cognitive assessments every 6 months and post-surgery. MRI scans were performed at baseline and throughout the study. On day 3 post-stroke, rats were randomized to receive either angiotensin II type 2 receptor (AT2R) agonist Compound 21 (C21) or plain water for 8 weeks. SHRs demonstrated a progressive cognitive decline and significant MRI abnormalities before stroke. Perioperative mortality within 72 h of stroke was low. Stroke resulted in significant acute brain swelling, chronic brain atrophy, and sustained sensorimotor and behavioral deficits. There was no evidence of anhedonia at week 8. C21 enhanced sensorimotor recovery and ischemic lesion resolution at week 8. SHRs represent a clinically relevant animal model to study aging and stroke-associated VCID. This study underscores the importance of translational disease modeling and provides evidence that modulation of the AT2R signaling via C21 may be a useful therapeutic option to improve sensorimotor and cognitive outcomes even in aged animals.

10.
eNeuro ; 11(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38290851

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia and results in neurodegeneration and cognitive impairment. White matter (WM) is affected in AD and has implications for neural circuitry and cognitive function. The trajectory of these changes across age, however, is still not well understood, especially at earlier stages in life. To address this, we used the AppNL-G-F/NL-G-F knock-in (APPKI) mouse model that harbors a single copy knock-in of the human amyloid precursor protein (APP) gene with three familial AD mutations. We performed in vivo diffusion tensor imaging (DTI) to study how the structural properties of the brain change across age in the context of AD. In late age APPKI mice, we observed reduced fractional anisotropy (FA), a proxy of WM integrity, in multiple brain regions, including the hippocampus, anterior commissure (AC), neocortex, and hypothalamus. At the cellular level, we observed greater numbers of oligodendrocytes in middle age (prior to observations in DTI) in both the AC, a major interhemispheric WM tract, and the hippocampus, which is involved in memory and heavily affected in AD, prior to observations in DTI. Proteomics analysis of the hippocampus also revealed altered expression of oligodendrocyte-related proteins with age and in APPKI mice. Together, these results help to improve our understanding of the development of AD pathology with age, and imply that middle age may be an important temporal window for potential therapeutic intervention.


Asunto(s)
Enfermedad de Alzheimer , Sustancia Blanca , Persona de Mediana Edad , Humanos , Ratones , Animales , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Sustancia Blanca/metabolismo , Imagen de Difusión Tensora/métodos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad
11.
Anim Biotechnol ; 35(1): 2298406, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38193808

RESUMEN

The Meiren yak is an important genetic resource in Gansu Province, China. In this study, we aimed to explore the evolutionary history and population structure of the genetic resource of Meiren yak and to mine the characteristic genes of Meiren yak. We analysed a total of 93 yaks of eight yak breeds based on whole genome resequencing combined with population genomics and used θπ ratio and Fst method to screen the selected sites in the genome region. The results proved that Meiren yak can be used as a potential genetic resource in Gansu Province. The genes in Meiren yak with positive selection in selection signal analysis were subjected to the Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses, which indicated that the genes were related to the adaptability to high altitude and hypoxic environment. By analysing the genetic variation of Meiren yak at the genome-wide level, this study provided a theoretical basis for genetic improvement of Meiren yak and for the development of high-quality yak resources.


Asunto(s)
Genoma , Bovinos/genética , Animales , Genoma/genética , Análisis de Secuencia de ADN , China
12.
Oper Neurosurg (Hagerstown) ; 26(4): 433-441, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37976445

RESUMEN

BACKGROUND AND OBJECTIVE: Microvascular decompression (MVD) is the most definitive and preferred surgical treatment for trigeminal neuralgia (TN). Treatment of TN caused by the vertebrobasilar artery (VBA) has been reported to be challenging and less satisfactory in complications and recurrence. Endoscopy has been implemented to provide a comprehensive view of neurovascular conflicts and minimize brain tissue stretch injury while exploring the trigeminal nerve. However, there are few retrospective studies on the treatment of TN caused by VBA by fully endoscopic microvascular decompression (E-MVD). This article aimed to illustrate the safety and efficacy of E-MVD for TN caused by the VBA. METHODS: Clinical data for 26 patients with TN caused by the VBA who underwent E-MVD from 2019 to 2022 were retrospectively analyzed. The characteristics of vertebrobasilar-associated TN were summarized. The safety and efficacy of E-MVD for vertebrobasilar-associated TN were estimated based on the analysis of intraoperative manipulation, postoperative symptom relief, and complications. RESULTS: Intraoperatively, the vertebrobasilar artery was regarded as a direct offending vessel in all 26 patients with TN, the vertebral artery in 18 (69.23%) and the basilar artery in 10 (38.46%). In addition to the vertebrobasilar artery, other vessels involved included the superior cerebellar artery in 12 patients, anterior inferior cerebellar artery in 9, posterior inferior cerebellar artery in 1, and veins in 4. All patients underwent E-MVD, and TN was entirely resolved in 26 (100%) patients immediately postoperatively. During the follow-up period of 12-45 months, no recurrence or serious complications were found. There were no serious postoperative complications, such as cerebellar swelling, intracranial hemorrhage, or death. CONCLUSION: E-MVD for vertebrobasilar-associated TN is effective and safe.


Asunto(s)
Cirugía para Descompresión Microvascular , Neuralgia del Trigémino , Humanos , Neuralgia del Trigémino/diagnóstico por imagen , Neuralgia del Trigémino/etiología , Neuralgia del Trigémino/cirugía , Estudios Retrospectivos , Cirugía para Descompresión Microvascular/métodos , Arteria Basilar/diagnóstico por imagen , Arteria Basilar/cirugía , Endoscopía
13.
Plant Reprod ; 37(1): 47-56, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37758937

RESUMEN

KEY MESSAGE: Unreduced megagametophytes via second-division restitution were confirmed through heterozygosity analysis, and four candidate physical centromeres of rubber were located for the first time. The evaluation of maternal heterozygosity restitution (MHR) is vital in identifying the mechanism of 2n gametogenesis and assessing the utilization value of 2n gametes. In this study, three full-sib triploid populations were employed to evaluate the MHR of 2n female gametes of rubber tree clone GT1 and to confirm their genetic derivation. The 2n female gametes of GT1 were derived from second-division restitution (SDR) and transmitted more than half of the parental heterozygosity. In addition, low recombination frequency markers were developed, and four candidate physical centromeres of rubber tree were located for the first time. The confirmation that 2n female gametes of rubber tree clone GT1 are derived from SDR provides insights into the molecular mechanisms of 2n gametogenesis. In addition, the identified centromere location will aid in the development of centromeric markers for the rapid identification of the 2n gametogenesis mechanism.


Asunto(s)
Hevea , Triploidía , Hevea/genética , Diploidia , Células Germinativas , Centrómero/genética
14.
NMR Biomed ; 37(1): e5037, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37721118

RESUMEN

Diffusion MRI (dMRI) explores tissue microstructures by analyzing diffusion-weighted signal decay measured at different b-values. While relatively low b-values are used for most dMRI models, high b-value diffusion-weighted imaging (DWI) techniques have gained interest given that the non-Gaussian water diffusion behavior observed at high b-values can yield potentially valuable information. In this study, we investigated anomalous diffusion behaviors associated with degeneration of spinal cord tissue using a continuous time random walk (CTRW) model for DWI data acquired across an extensive range of ultrahigh b-values. The diffusion data were acquired in situ from the lumbar level of spinal cords of wild-type and age-matched transgenic SOD1G93A mice, a well-established animal model of amyotrophic lateral sclerosis (ALS) featuring progressive degeneration of axonal tracts in this tissue. Based on the diffusion decay behaviors at low and ultrahigh b-values, we applied the CTRW model using various combinations of b-values and compared diffusion metrics calculated from the CTRW model between the experimental groups. We found that diffusion-weighted signal decay curves measured with ultrahigh b-values (up to 858,022 s/mm2 in this study) were well represented by the CTRW model. The anomalous diffusion coefficient obtained from lumbar spinal cords was significantly higher in SOD1G93A mice compared with control mice (14.7 × 10-5 ± 5.54 × 10-5  vs. 7.87 × 10-5 ± 2.48 × 10-5  mm2 /s, p = 0.01). We believe this is the first study to illustrate the efficacy of the CTRW model for analyzing anomalous diffusion regimes at ultrahigh b-values. The CTRW modeling of ultrahigh b-value dMRI can potentially present a novel approach for noninvasively evaluating alterations in spinal cord tissue associated with ALS pathology.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ratones , Animales , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/patología , Superóxido Dismutasa-1 , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Ratones Transgénicos , Imagen de Difusión por Resonancia Magnética , Modelos Animales de Enfermedad
15.
Front Chem ; 11: 1269911, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38099192

RESUMEN

Objective: Although radiation workers are exposed to much lower doses of neutron-γ rays than those suffered in nuclear explosions and accidents, it does not mean that their health is not affected by radiation. Lower doses of radiation do not always cause morphological aberrations in chromosomes, so more sophisticated tests must be sought to specific alterations in the exposed cells. Our goal was to characterize the specific gene expression in lymphocytes from logging workers who were continuously exposed to low doses of neutron-γ radiation. We hypothesized that the combination of cell type-specific transcriptomes and open chromatin profiles would identify lymphocyte-specific gene alterations induced by long-term radiation with low-dose neutron-γ-rays and discover new regulatory pathways and transcriptional regulatory elements. Methods: Lymphocytes were extracted from workers who have been occupationally exposed to neutron-γ and workers unexposed to radiation in the same company. mRNA-seq and ATAC-seq (Assay for Transposase-Accessible Chromatin with high-throughput sequencing) were performed, followed integrative analysis to identify specific gene regulatory regions induced by neutron-γ radiation. A qPCR assay was then performed to verify the downregulation of RNA coding for ribosomal proteins and flow cytometry was used to detect ribosomal protein expression and cell cycle alterations. Results: We identified transcripts that were specifically induced by neutron-γ radiation and discovered differential open chromatin regions that correlated with these gene activation patterns. Notably, we observed a downward trend in the expression of both differentially expressed genes and open chromatin peaks. Our most significant finding was that the differential peak upregulated in ATAC-seq, while the differential gene was downregulated in the ribosome pathway. We confirmed that neutron-γ radiation leads to transcriptional inhibition by analyzing the most enriched promoters, examining RPS18 and RPS27A expression by qPCR, and analyzing protein-protein interactions of the differential genes. Ribosomal protein expression and cell cycle were also affected by neutron-γ as detected by flow cytometry. Conclusion: We have comprehensively analyzed the genetic landscape of human lymphocytes based on chromatin accessibility and transcript levels, enabling the identification of novel neutron-γ induced signature genes not previously known. By comparing fine-mapping of open chromatin and RNA reads, we have determined that neutron-γ specifically leads to downregulation of genes in the ribosome pathway, with pseudogenes potentially playing a crucial role.

16.
Sci Rep ; 13(1): 22869, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38129459

RESUMEN

Soil salinization substantially hampers the growth and development of wheat, potentially leading to plant death in severe cases, thus reducing grain yield and quality. This phenomenon poses a significant threat to food security in China. We investigated the effects of two exogenous plant growth regulators, sodium salicylate and folcisteine, on the wheat physiology and key characteristics under salt stress using hydroponics method. The results indicated that both regulators effectively mitigated the growth inhibition of wheat under salt stress. We assessed morphological and physiological indexes, including antioxidant enzyme activities (superoxide dismutase [SOD], catalase [CAT], peroxidase [POD]) and malondialdehyde (MDA) concentration in wheat after foliar application of sodium salicylate and folcisteine under salt stress. The findings revealed that sodium salicylate was more effective than folcisteine. However, folcisteine showed superior performance in reducing hydrogen peroxide (H2O2) content and superoxide anion (O2-) level compared to sodium salicylate. Simultaneously, Concurrent application of both regulators synergistically enhanced their efficacy, yielding the most favorable outcomes. In addition, this study noted that while the initial effects of these regulators were not pronounced, their sustained application significantly improved wheat growth in stressful condition and alleviated the detrimental impacts of salt stress. This approach could effectively guarantee the food security and production in China.


Asunto(s)
Plantones , Triticum , Salicilato de Sodio/farmacología , Peróxido de Hidrógeno/farmacología , Antioxidantes/farmacología , Estrés Salino , Superóxido Dismutasa/farmacología , Estrés Fisiológico
17.
Toxics ; 11(12)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38133393

RESUMEN

Florfenicol (FLO) has been shown to elicit diverse toxic effects in plants, insects, and mammals. Previously, our investigations revealed that FLO induced abnormal cardiac development and early embryonic mortality in chicken embryos. However, the effect of FLO on mitochondrial responses in stem cells remains unclear. In this study, we show that FLO significantly diminishes proliferation viability and obstructs the directed differentiation of P19 stem cells (P19SCs) into cardiomyocytes. Proteomic analysis revealed 148 differentially expressed proteins in response to FLO. Functional analysis has pinpointed FLO interference with biological processes associated with oxidative phosphorylation within the mitochondria. In alignment with the results of proteomic analysis, we confirmed that FLO inhibits the expression of both nuclear DNA-encoded and mitochondrial DNA-encoded subunits of the electron transport chain. Subsequent experiments demonstrated that FLO disrupts mitochondrial dynamics and induces the mitochondrial unfolded protein response to maintain mitochondrial homeostasis. These findings collectively highlight the significance of mitochondrial dynamics and the mitochondrial unfolded protein response to mediate the decreased proliferation viability and directed differentiation potential in P19SCs treated with FLO. In conclusion, this study provides a comprehensive overview of mitochondrial responses to FLO-induced cytotoxicity and enhances our understandings of the molecular mechanisms underlying FLO-induced embryonic toxicity.

19.
Nanoscale ; 15(44): 18004-18014, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37909355

RESUMEN

Freezing of water and melting of ice at the nanoscale play critical roles in science and technology fields, including aviation systems, infrastructures, and other broad spectrum of technologies. To cope with the icing challenge, nanoscale anti-icing surface technology has been developed. The freezing and melting temperatures can be tailored by manipulating the size (the radius of water or ice); however, it lacks systemic research. In this work, the size effect on the melting temperature of ice nanocrystals was first established, which considered the variation of bond energy and equivalent heat energy from the perspective of the force-heat equivalence energy density principle. Based on the heterogeneous nucleation mode and by further considering the size and temperature effects on the interface energy involved solid-liquid energy and liquid-vapor energy as well as the above developed melting temperature model, another model is established to accurately predict the freezing temperature of water nanodroplets. The parameters required by the two models established in this paper have a clear physical meaning and establish the quantitative relationships among freezing temperature, melting temperature, surface stress, interface energy, and other thermodynamic parameters. The agreement between model prediction and experimental simulation data confirms the validity and universality of the established models. The higher prediction accuracy of this work compared to the other theoretical models, due to the more detailed consideration and the reference point, captures the errors introduced by the experiment or simulation. This study contributes to a deeper understanding of the underlying mechanism of freezing of water and melting of ice nanocrystals and provides theoretical guidance for the design of cryopreservation systems and anti-icing systems for aviation.

20.
Curr Atheroscler Rep ; 25(10): 653-662, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37736845

RESUMEN

PURPOSE OF REVIEW: Transintestinal cholesterol excretion (TICE) is a non-biliary pathway that excretes excess cholesterol from the body through feces. This article focuses on the research progress of the TICE pathway in the last few years, including the discovery process of the TICE pathway, its molecular mechanism, and potential clinical applications. RECENT FINDINGS: Cholesterol homeostasis is vital for cardiovascular diseases, stroke, and neurodegenerative diseases. Beyond the cholesterol excretion via hepatobiliary pathway, TICE contributes significantly to reverse cholesterol transport ex vivo and in vivo. Nuclear receptors are ligand-activated transcription factors that regulate cholesterol metabolism. The farnesoid X receptor (FXR) and liver X receptor (LXR) activated, respectively, by oxysterols and bile acids promote intestinal cholesterol secretion through ABCG5/G8. Nutrient regulators and intestinal flora also modulate cholesterol secretion through the TICE pathway. TICE allows direct elimination of plasma cholesterol, which may provide an attractive therapeutic targets. TICE pathway may provide a potential target to stimulate cholesterol elimination and reduce the risk of cardiovascular diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...